This documentation is automatically generated by online-judge-tools/verification-helper
# verification-helper: PROBLEM https://judge.yosupo.jp/problem/factorize
from pathlib import Path
import sys
sys.path.append(str(Path(__file__).resolve().parent.parent.parent.parent))
from math import gcd
def MillerRabin(n):
if n <= 1:
return False
elif n == 2:
return True
elif n % 2 == 0:
return False
if n < 4759123141:
A = [2, 7, 61]
else:
A = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]
s = 0
d = n - 1
while d % 2 == 0:
s += 1
d >>= 1
for a in A:
if a % n == 0:
return True
x = pow(a, d, n)
if x != 1:
for t in range(s):
if x == n - 1:
break
x = x * x % n
else:
return False
return True
def pollard(n):
# https://qiita.com/t_fuki/items/7cd50de54d3c5d063b4a
if n % 2 == 0:
return 2
m = int(n**0.125) + 1
step = 0
while 1:
step += 1
def f(x):
return (x * x + step) % n
y = k = 0
g = q = r = 1
while g == 1:
x = y
while k < 3 * r // 4:
y = f(y)
k += 1
while k < r and g == 1:
ys = y
for _ in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
k = r
r <<= 1
if g == n:
g = 1
y = ys
while g == 1:
y = f(y)
g = gcd(abs(x - y), n)
if g == n:
continue
if MillerRabin(g):
return g
elif MillerRabin(n // g):
return n // g
else:
return pollard(g)
def primefact(n):
res = []
while n > 1 and not MillerRabin(n):
p = pollard(n)
while n % p == 0:
res.append(p)
n //= p
if n != 1:
res.append(n)
return sorted(res)
def primedict(n):
P = primefact(n)
ret = {}
for p in P:
ret[p] = ret.get(p, 0) + 1
return ret
Q = int(input())
for _ in range(Q):
n = int(input())
P = primefact(n)
print(len(P), *P)
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/onlinejudge_verify/documentation/build.py", line 81, in _render_source_code_stat
bundled_code = language.bundle(
^^^^^^^^^^^^^^^^
File "/opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/onlinejudge_verify/languages/python.py", line 108, in bundle
raise NotImplementedError
NotImplementedError